
Securing Runtime Memory via MMU manipulation
Marinos Tsantekidis, Vassilis Prevelakis

Presenter: Marinos Tsantekidis

Institute of Computer Science - FORTH
Heraklion, Greece

E-mail: tsantekid@ics.forth.gr

TU Braunschweig
Germany

E-mail: tsantekidis@ida.ing.tu-bs.de

November 14-18, 2021 | SECURWARE2021 | Securing Runtime Memory via MMU manipulation | Slide 2

Short bio

I am Marinos Tsantekidis, a Ph.D. candidate at the Embedded Computer Security
Workgroup of the Institute of Computer and Network Engineering at TU Braunschweig -
Germany, under the supervision of Prof. Vassilis Prevelakis. I also hold a research
assistant position at the Institute of Computer Science in FORTH - Greece. I received
my Bachelor of Science degree in Computer Science from the Technological Educational
Institute of Thessaloniki, Greece in 2011 and my Master of Science degree in Digital
Systems Security from the University of Piraeus, Greece in 2015. My research focuses
on security at the operating system level.

Current EU H2020 Projects:

https://www.concordia-h2020.eu https://sentinel-project.eu/

https://www.roxanne-euproject.org/

November 14-18, 2021 | SECURWARE2021 | Securing Runtime Memory via MMU manipulation | Slide 3

Outline

Motivation

Design

Implementation

Evaluation

Conclusion

November 14-18, 2021 | SECURWARE2021 | Securing Runtime Memory via MMU manipulation | Slide 4

Motivation (1/3)

● New challenges and vulnerabilities every day
● Increasing requirements for security considerations

and provisions for user applications
● Attackers more competent and effective
● Attacks more elaborate
● Complete security of a software system unfeasible

– Detection of vulnerabilities before 0day attacks

– Actively exploited vulnerabilities

● Program behavior monitoring
● Between OS and a running application

November 14-18, 2021 | SECURWARE2021 | Securing Runtime Memory via MMU manipulation | Slide 5

Motivation (2/3)

Two techniques for analysis, based on our previous work

1)Wrappers inserted between the program and the
library code

2)Kernel intercepting transfers from main program to
library or from library to library

Intercept all library calls from both the user as well as the
kernel side, analyze them and take some form of action
(reporting, argument checking, policy enforcement, etc.)
before allowing them to continue

November 14-18, 2021 | SECURWARE2021 | Securing Runtime Memory via MMU manipulation | Slide 6

Motivation (3/3)

Trusted Execution Environment (TEE) at the memory
space of a user application
● Isolated execution environment, parallel to a standard

OS
– Protection of sensitive code and data

MMU manipulation to map protected private pages into
the address space of a running program, accessible only
by specific functions inside external libraries
● Minimize what can access sensitive data/code
● Specific actions, specific parts of the program, specific

point in execution time

November 14-18, 2021 | SECURWARE2021 | Securing Runtime Memory via MMU manipulation | Slide 7

Outline

Motivation

Design

Implementation

Evaluation

Conclusion

November 14-18, 2021 | SECURWARE2021 | Securing Runtime Memory via MMU manipulation | Slide 8

Design (1/2)

● Separate a process’s
executable areas
(external libraries/main
executable)

● Strict control over any
attempt to invoke such an
area
– Redirect all calls through a
gate library mapped by a
custom Linux kernel (MMU)

November 14-18, 2021 | SECURWARE2021 | Securing Runtime Memory via MMU manipulation | Slide 9

Design (2/2)

● Map private secure memory pages for each area at
run-time

● Accessible only to specific functions inside the gate
library and only at specific intervals during execution

November 14-18, 2021 | SECURWARE2021 | Securing Runtime Memory via MMU manipulation | Slide 10

Outline

Motivation

Design

Implementation

Evaluation

Conclusion

November 14-18, 2021 | SECURWARE2021 | Securing Runtime Memory via MMU manipulation | Slide 11

Implementation (1/3)

Compartmentalization
● Separate all executable Virtual

Memory Areas (VMAs)

● Mark all the VMAs non-
executable (NX)

● Map a custom gate library in
the process’s memory space,
one for each identified VMA

● Intercept only calls between
libraries and not internal ones

November 14-18, 2021 | SECURWARE2021 | Securing Runtime Memory via MMU manipulation | Slide 12

Implementation (2/3)

Private Memory Mapping
● Rewrite the Page Table whenever a library boundary is

crossed

● Extend it by adding protected private memory pages for
every library

● Mapped only when the CPU executes code within the
associated library, otherwise unmapped

● Automatic transparent procedure

● No access to source code/binary required

November 14-18, 2021 | SECURWARE2021 | Securing Runtime Memory via MMU manipulation | Slide 13

Implementation (3/3)

Application Programming Interface (API)
● Analogous to the one used for shared memory

November 14-18, 2021 | SECURWARE2021 | Securing Runtime Memory via MMU manipulation | Slide 14

Outline

Motivation

Design

Implementation

Evaluation

Conclusion

November 14-18, 2021 | SECURWARE2021 | Securing Runtime Memory via MMU manipulation | Slide 15

Evaluation (1/2)

Performance overhead
● Test-bed reported by PTS

● RSA 4096-bit signing

● 2% average decrease in
performance

November 14-18, 2021 | SECURWARE2021 | Securing Runtime Memory via MMU manipulation | Slide 16

Evaluation (2/2)

Memory Coverage Analysis
● Measure the degree of compartmentalization of a

program’s memory space

● Four well known, widely accepted applications

November 14-18, 2021 | SECURWARE2021 | Securing Runtime Memory via MMU manipulation | Slide 17

Outline

Motivation

Design

Implementation

Evaluation

Conclusion

November 14-18, 2021 | SECURWARE2021 | Securing Runtime Memory via MMU manipulation | Slide 18

Conclusion

● Monitoring framework based on two techniques from
our previous work

1)A library wrapper between a program and the
original library code

2)A kernel modification that intercepts all calls to
libraries/executables

● TEE at the memory space of a user application
● Leverage MMU to map protected private pages into the

address space of a running program
– Limit what actions can be performed on the protected data,

by what part of the program and at which point in execution
time

November 14-18, 2021 | SECURWARE2021 | Securing Runtime Memory via MMU manipulation | Slide 19

Thank you

Questions?

https://mtsantekidis.gr

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

