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Motivation (1/3)

● New challenges and vulnerabilities every day
● Increasing requirements for security considerations 

and provisions for user applications
● Attackers more competent and effective
● Attacks more elaborate
● Complete security of a software system unfeasible

– Detection of vulnerabilities before 0day attacks

– Actively exploited vulnerabilities

● Program behavior monitoring
● Between OS and a running application
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Motivation (2/3)

Two techniques for analysis, based on our previous work

1)Wrappers inserted between the program and the 
library code

2)Kernel intercepting transfers from main program to 
library or from library to library

Intercept all library calls from both the user as well as the 
kernel side, analyze them and take some form of action 
(reporting, argument checking, policy enforcement, etc.) 
before allowing them to continue
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Motivation (3/3)

Trusted Execution Environment (TEE) at the memory 
space of a user application
● Isolated execution environment, parallel to a standard 

OS
– Protection of sensitive code and data

MMU manipulation to map protected private pages into 
the address space of a running program, accessible only 
by specific functions inside external libraries
● Minimize what can access sensitive data/code
● Specific actions, specific parts of the program, specific 

point in execution time
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Design (1/2)

● Separate a process’s 
executable areas 
(external libraries/main 
executable)

● Strict control over any 
attempt to invoke such an 
area
– Redirect all calls through a 
gate library mapped by a 
custom Linux kernel (MMU)
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Design (2/2)

● Map private secure memory pages for each area at 
run-time

● Accessible only to specific functions inside the gate 
library and only at specific intervals during execution 
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Implementation (1/3)

Compartmentalization
● Separate all executable Virtual 

Memory Areas (VMAs)

● Mark all the VMAs non-
executable (NX)

● Map a custom gate library in 
the process’s memory space, 
one for each identified VMA

● Intercept only calls between 
libraries and not internal ones
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Implementation (2/3)

Private Memory Mapping
● Rewrite the Page Table whenever a library boundary is 

crossed

● Extend it by adding protected private memory pages for 
every library

● Mapped only when the CPU executes code within the 
associated library, otherwise unmapped

● Automatic transparent procedure

● No access to source code/binary required
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Implementation (3/3)

Application Programming Interface (API)
● Analogous to the one used for shared memory
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Evaluation (1/2)

Performance overhead
● Test-bed reported by PTS

● RSA 4096-bit signing

● 2% average decrease in 
performance
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Evaluation (2/2)

Memory Coverage Analysis
● Measure the degree of compartmentalization of a 

program’s memory space

● Four well known, widely accepted applications
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Conclusion

● Monitoring framework based on two techniques from 
our previous work

1)A library wrapper between a program and the 
original library code

2)A kernel modification that intercepts all calls to 
libraries/executables

● TEE at the memory space of a user application
● Leverage MMU to map protected private pages into the 

address space of a running program
– Limit what actions can be performed on the protected data, 

by what part of the program and at which point in execution 
time
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Thank you

Questions?

https://mtsantekidis.gr
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